First Total Synthesis of (土)-13-Hydroxy-8 (14)-abietene

Cheng Lu ZHANG*, Ying Ge MA, Chun Li SUN, Ye Hong QIU
Department of Chemistry, Liaoning Normal University, Dalian 116029

Abstract

The first total synthesis of (\pm)-13-hydroxy-8 (14)-abietene was accomplished in 20.1\% yield via a strategy of $\mathrm{AC} \rightarrow \mathrm{ABC}$, in which the reduction of compound $\mathbf{5}$ with $\mathrm{Li} / \mathrm{NH}_{3}$ gave the key intermediate 6 and the title compound was then obtained by the reaction of compound $\mathbf{6}$ with Grignard reagent.

Keywords: Total synthesis, (\pm)-13-hydroxy-8 (14)-abietene, diterpene.
(\pm)-13-Hydroxy-8 (14)-abietene, a rare alicyclic diterpene possessing an isopropyl group and a hydroxy group at the C-13 position, was isolated from Solidago missouriensis nutt ${ }^{1}$. Many diterpenes exhibit significant bioactivities, such as antibacterial. As a part of our synthetic studies on the naturally-occurring diterpenes, we are attemping the synthesis of the rare natural compound. To our knowledge no total synthetic work has been reported yet. In order to study the further relationship between the structure and bioactivities, we develop a novel route which was simple and (\pm)-13-hydroxy- 8 (14)-abietene 7^{2} could be obtained in good yield. The synthesis of the title compound was achieved through the $\mathrm{AC} \rightarrow \mathrm{ABC}$ ring construction strategy.

As shown in Scheme 1, we used α-cyclocitral 1 as A ring synthon and the compound $\mathbf{2}$ as the C ring synthon. The synthesis of the target compound 7 was based on our previous work ${ }^{3-6}$.

Condensation of compound $\mathbf{1}$ with $\mathbf{2}$ in dry THF in the presence of $n-\mathrm{BuLi}$ in an argon atmosphere afforded the desired compound $\mathbf{3}$ in 73% yield. Partial hydrogenation of $\mathbf{3}$ in anhydrous ethanol at room temperature over $10 \% \mathrm{Pd} / \mathrm{C}$ gave compound $\mathbf{4}$ in 98% yield. The reagent $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ was used in the intramolecular cyclization step (B ring) at room temperature to afford the product $\mathbf{5}$ that was in trans form in 89% yield. The trans-configuration of A / B ring junction in 5 was characterized specifically by the upfield signal of the $\mathrm{C}_{4 \alpha}$ methyl group at 1.0 ppm . According to the literature ${ }^{7}$, when the A / B ring is in trans junction, the $\mathrm{C}_{4}-\alpha$-methyl group is slightly deshielded by the aromatic ring C , the δ value of $\mathrm{C}_{4}-\alpha$-methyl group will appear at about 1.0 ppm . When A / B ring is a cis junction, the $\mathrm{C}_{4 \alpha}$ methyl group remains within the sphere of magnetic influence of aromatic ring C , the chemical shift of $\mathrm{C}_{4 \alpha}$ methyl group appears at about 0.40 ppm . Reduction of compound $\mathbf{5}$ with $\mathrm{Li} / \mathrm{NH}_{3}$ afforded α, β-unsaturated ketone $\mathbf{6}$ in

[^0]
Scheme 1

Reagents and conditions: (a) n-BuLi, THF, r. t., 73%; (b) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}$, r. t., 98%; (c) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r. t., 89%; (d) Li, NH_{3}, r. t., 93%; (e) $\mathrm{Mg}, i-\mathrm{PrBr}, \mathrm{CeCl}_{2}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 34 \%$.
good yield. Compound 6 reacted with iso $-\mathrm{PrMgBr}\left(\mathrm{THF}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}\right)$ gave the target compound 7.

In conclusion, in the present work, a simple convergent synthetic route has been developed for the discovered diterpenoid.

Acknowledgments

We are grateful to Professor Xin Fu PAN of the Department of Chemistry, Lanzhou University.

References and Notes

1. T. Anthonsen and G. Bergland, Act. Chem. Scand., 1973, $27(3), 1073$.
2. (\pm)-13-Hydroxy-8 (14)-abietene: yellow crystal, m.p.144-147 ${ }^{\circ} \mathrm{C}$. IR (KBr), v/cm ${ }^{-1}: 3418(\mathrm{OH})$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 0.86(\mathrm{~s}, \mathrm{H}-19), 0.93(\mathrm{~s}, \mathrm{H}-18), 0.87(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.96(\mathrm{~d}, 3 \mathrm{H}$, $J=7.0 \mathrm{~Hz}$), $1.83(\mathrm{sept}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.42-2.39(\mathrm{~m}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 4.79(\mathrm{dd}, J=10,7.2 \mathrm{~Hz}$, $\mathrm{H}-7), 7.07(\mathrm{dd}, 1 \mathrm{H}, J=8.0,1.8 \mathrm{~Hz}$), $7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 15 \mathrm{H}), 2.35-2.47(\mathrm{~m}, 1 \mathrm{H}), 6.90-7.06(\mathrm{~m}$, 1H). ${ }^{13} \mathrm{C}$ NMR, $\delta: 16.2$ (C-17), 17.3 (C-16), 18.5 (C-11), 19.2 (C-2), 20.7 (C-18), 22.9 (C-19), 23.1 (C-20), 28.5 (C-12), 30.1 (C-6), 33.2 (C-4), 37.8 (C-15), 38.0 (C-10), 38.6 (C-1), 41.2 (C-3), 45.6 (C-7), 47.4 (d, C-9), 49.2 (C-5), 71.3 (C-13), 135.6 (C-8), 141.8 (C-14); HRMS (positive-SIMS): $291.4846(\mathrm{M}+1)$ (Calcd.For: $\left.\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}: 290.4840\right)$. The above data were consistent with the literature ${ }^{1}$.
3. X. C. Wang, X. F. Pan, Tetrahedron, 1996, 52, 1059.
4. C. L. Zhang, P. Y. Bie, X. J. Peng, X. F. Pan, J. Chin. Chem. Soc., 2000, 130.
5. C. L. Zhang, P. Y. Bie, X. J. Peng, X. F. Pan, Chem. J. Chin.Univ., 2003, 24, 1910.
6. C. L. Zhang, P. Y. Bie, X. J. Peng, X. F. Pan, Chin. Chem. Lett., 2002, 13(2), 133.
7. F. M. Alfonso, M. L. B. Peter, W. J. Richard, J. Org. Chem., 1965, 30, 713.

Received 29 June, 2004

[^0]: * E-mail: zhangchenglu2208@sohu.com

